Working principle of a capacitive accelerometer

Andrea Nisticò

Supervisor: Corrado di Natale

Engineering Sciences

University of Roma Tor Vergata

• Transducer: a device transforming a quantity from a form of energy to another.

 Sensor: transducer that transforms the quantity of interest into a form of energy for which it is possible to measure, to store, to process and to transmit the information.

• Give to the system the possibility to gain information from the surrounding environment.

• Every complex system (artificial or living) has a sensorial part.

• Due to their importance a huge number of different sensors is available on the market.

Sensors

Mems

Micro-Electro-Mechanical Systems, or MEMS, is a technology that can be defined as miniaturized mechanical and electro-mechanical elements that are made using the techniques of microfabrication.

The dimension can vary from microns to millimeters.

- Low consumption
- Low costs
- High precision
- High integration
- Versatile technology

Mems

Acceleration

In physics, acceleration is the rate at which the velocity of a body changes with time

In other words we have:

$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}$$

From Newton law also the following relation is true:

$$\vec{F} = m\vec{a}$$

How can we measure it?

Acceleration

Since $\frac{\vec{F}}{m} = \vec{a}$ we can try to evaluate in some way a force and then deduce the acceleration.

$$F = -kx = ma$$

Not very accurate!

We add the damper due to damping forces

From dynamics we have: $k(z - y) + c(\dot{z} - \dot{y}) + m\ddot{z} = 0$

If we assume that we can measure the relative position between the mass and the frame, we define: x = z - y and the dynamic equation become:

$$\ddot{x} + \frac{c}{m}\dot{x} + \frac{k}{m}x = -\ddot{y} = -a(t)$$

To calculate the transfer function of the system we apply Laplace transform and then evaluate $\frac{\mathcal{L}x(s)}{\mathcal{L}a(s)} = G(s)$

Obtaining :

$$G(s) = -\frac{1}{s^2 + \frac{c}{m}s + \frac{k}{m}}$$

Important information on the frequency behavior are obtained plotting Bode diagram.

Resonant low pass behavior → if we want good measures we must stay in the flat part.

For $\omega \ll \omega_n$ the magnitude does not depend on frequency so we can assume that $G(s) \approx G(0)$ in this region.

According to this assumption we have that:

$$G(s) = -\frac{m}{k}$$

From which we can finally deduce the measured value for

acceleration
$$\rightarrow a(t) = -\frac{k}{m}x(t)$$

We found that:

$$a(t) = -\frac{k}{m}x(t)$$

Which is called the fundamental equation of accelerometers.

This equation gives us the measured value of the acceleration in terms of x(t).

Note that we assumed to know in some way x(t).

How can we obtain a method to measure x(t)?

Measuring position (1)

Equation for plates capacitor:

$$C = \varepsilon \frac{A}{x}$$

 x_0

in a Wheatstone bridge: if $\delta \ll l = v_{out} = \frac{v_{in}}{2} \cdot \delta$ at low frequency regime:

$$a = \frac{K}{M} \cdot x = \frac{K}{M} \cdot x_0 \cdot \delta = \frac{K}{M} \cdot x_0 \cdot 2 \cdot \frac{v_{out}}{v_{in}} \longrightarrow X(v)$$

Measuring position (2)

Time

Simulation

Now that we can have everything we need, we can proceed building a model for our accelerometer.

Simulation ($\omega = \omega_n$)

Simulation ($\omega < \omega_n$)

Simulation ($\omega \ll \omega_n$)

ADXL 150

Table 19.1.	Selected Specifications of ADXL150 Capacitive Accelerometer. (Source: Analog	
Devices Data Sheet.)		

Property	Specification
Sensitivity	38mV/g
Full-scale range	\pm 50 g
Transfer function form	see text
Package type	14-pin cerpak
Temperature range	-40 to +85°C
Supply voltage	4 - 6 V
Nonlinearity	0.2 %
Package alignment error	$\pm 1^{\circ}$
Transverse sensitivity	$\pm 2\%$
Zero-g output voltage (Bias)	$V_s/2 \pm 0.35 \text{ V}$
Temperature drift (from 25°C to T_{min} or T_{max})	0.2 g
Noise from 10 Hz to nominal bandwidth	$1 \text{ m}g/\sqrt{\text{Hz}}$
Clock noise	5 mV peak-to-peak
Bandwidth	400 or 1000 Hz, customer choice
Temperature drift of bandwidth	50 Hz
Sensor resonant frequency	24 kHz
Self test output change	400 mV
Absolute maximum acceleration	2000 g (unpowered)
	500 g (powered)
Drop test	1.2 meters
Min/max storage temperature	-65 to 150 °C
Max lead temperature (10 seconds)	245 °C

ADXL 150

Conclusion

 Because of their high sensitivity, small size and low cost, surface micromachined accelerometers have made numerous new applications possible.

• The imagination of designers now seems to be the limiting factor in the scope of potential applications.

Conclusion (applications)

Ignition of airbag explosive (AUTOMOTIVE)

Feel vibrations of rotating machines (INDUSTRY)

Measuring the movement of Wii joystick / orientation and movement of smartphones (COMMERCIAL)

Monitoring the acceleration for crew health / Firing next stage in some rockets (SPACE-AERONAUTICS)

THANK YOU

Bibliography:

- Microsystems design, Stephen D. Senturia
- Mechanical Vibrations, S. Rao